Arithmetic of Potts Model Hypersurfaces

نویسندگان

  • MATILDE MARCOLLI
  • Francis Brown
چکیده

We consider Potts model hypersurfaces defined by the multivariate Tutte polynomial of graphs (Potts model partition function). We focus on the behavior of the number of points over finite fields for these hypersurfaces, in comparison with the graph hypersurfaces of perturbative quantum field theory defined by the Kirchhoff graph polynomial. We give a very simple example of the failure of the “fibration condition” in the dependence of the Grothendieck class on the number of spin states and of the polynomial countability condition for these Potts model hypersurfaces. We then show that a period computation, formally similar to the parametric Feynman integrals of quantum field theory, arises by considering certain thermodynamic averages. One can show that these evaluate to combinations of multiple zeta values for Potts models on polygon polymer chains, while silicate tetrahedral chains provide a candidate for a possible occurrence of non-mixed Tate periods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stable Birational Equivalence and Geometric Chevalley-warning

We propose a ‘geometric Chevalley-Warning’ conjecture, that is a motivic extension of the Chevalley-Warning theorem in number theory. It is equivalent to a particular case of a recent conjecture of F. Brown and O.Schnetz. In this paper, we show the conjecture is true for linear hyperplane arrangements, quadratic and singular cubic hypersurfaces of any dimension, and cubic surfaces in P. The las...

متن کامل

Potts Models with Magnetic Field: Arithmetic, Geometry, and Computation

We give a sheaf theoretic interpretation of Potts models with external magnetic field, in terms of constructible sheaves and their Euler characteristics. We show that the polynomial countability question for the hypersurfaces defined by the vanishing of the partition function is affected by changes in the magnetic field: elementary examples suffice to see non-polynomially countable cases that b...

متن کامل

Translation of Taylor Series into LFT Expansions

In Exact Real Arithmetic, real numbers are represented as potentially infinite streams of information units, called digits. In this paper, we work in the framework of Linear Fractional Transformations (LFT’s, also known as Möbius transformations) that provide an elegant approach to real number arithmetic (Gosper 1972, Vuillemin 1990, Nielsen and Kornerup 1995, Potts and Edalat 1996, Edalat and ...

متن کامل

Computing Periods of Hypersurfaces

We give an algorithm to compute the periods of smooth projective hypersurfaces of any dimension. This is an improvement over existing algorithms which could only compute the periods of plane curves. Our algorithm reduces the evaluation of period integrals to an initial value problem for ordinary differential equations of Picard–Fuchs type. In this way, the periods can be computed to extreme-pre...

متن کامل

Hyperplane sections in arithmetic hyperbolic manifolds

In this paper, we prove that the homology groups of immersed totally geodesic hypersurfaces of compact arithmetic hyperbolic manifolds virtually inject in the homology group of the

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011